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H I G H L I G H T S

• Land contaminated with radium is hazardous to human health.
• Routine monitoring permits identification and removal of radioactive hot particles.
• Current alarm algorithms do not provide reliable hot particle detection.
• Spectral processing using Machine Learning significantly improves detection.
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The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led
to a large number of contaminated legacy sites across Europe andNorth America. Sites that pose a high risk to the
general public can present expensive and long-term remediation projects. Often themost pragmatic remediation
approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from
themost hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe dispos-
al. However, current detection systems do not fully utilise all spectral information resulting in low detection rates
and ultimately an increased risk to the human health. The aim of this study was to establish an optimised
detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium
iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected
into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine
learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated
that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared
to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper
into the soil column or with half of the activity at the same depth. It was also found that noise presented by in-
ternal contamination restricted lanthanum bromide for this application.

© 2015 Published by Elsevier B.V.

1. Introduction

1.1. Radium contamination

Radium (226Ra) was used extensively during the 20th century pre-
dominantly in the form of luminescent paint. Waste generated from
military, industrial and pharmaceutical products was regularly buried
with little record of its location and inventory (Harvie, 1999). With a

half-life of 1600 years, 226Ra contamination is a multigenerational
issue. In the UK, a recent government report conservatively estimated
there to be 150 to 250 contaminated legacy sites, whilst acknowledging
there could be as many as a 1000 (DECC, 2012). Similar extents of 226Ra
contamination have been found across Europe and North America
(Harvie, 1999). Ultimately, the risk of human exposure at these sites is
dependent on a number of potential pathways and the form of contam-
ination and not exclusively on external dose (Dale et al., 2008).

One such pathway, that has the potential to cause significant radio-
logical harm, is ingestion of small highly radioactive items often referred
to as hot particles (Baker and Toque, 2005). One study explored the com-
mitted dose that could be received by a member of the public through
simulated stomach acid digestions of a range of radium hot particles

Science of the Total Environment 521–522 (2015) 270–279

⁎ Corresponding author.
E-mail addresses: a.l.varley@stir.ac.uk (A. Varley), a.n.tyler@stir.ac.uk (A. Tyler),

l.s.smith@cs.stir.ac.uk (L. Smith), paul.dale@sepa.org.uk (P. Dale),
Mike.Davies@nuvia.co.uk (M. Davies).

http://dx.doi.org/10.1016/j.scitotenv.2015.03.131
0048-9697/© 2015 Published by Elsevier B.V.

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2015.03.131&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2015.03.131
mailto:a.l.varley@stir.ac.uk
mailto:a.n.tyler@stir.ac.uk
mailto:l.s.smith@cs.stir.ac.uk
mailto:paul.dale@sepa.org.uk
mailto:Mike.Davies@nuvia.co.uk
http://dx.doi.org/10.1016/j.scitotenv.2015.03.131
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


found in Scotland (Tyler et al., 2013). It was concluded that ingestion of
a hot particlewith an activity higher than 20 kBq could result in a com-
mitted dose to an infant exceeding the 100 mSv threshold deemed to
cause significant radiological harm (ICRP, 2007). At particular sites in
Scotland, it has been recognised by the Scottish Environment Protection
Agency (SEPA) that there is the possibility of a member of the public
coming into contact with such a hot particle. To safeguard against this
at Dalgety Bay, Fife, Scotland, routine monitoring is undertaken to de-
tect and retrieve any significant radioactive items (Dale et al., 2013).
To confirm monitoring is undertaken with sufficient accuracy, SEPA
have outlined the following criterion:

• A 20 kBq hot particle at a burial depth of 0.1mmust be detected 95% of
the time.

This paper aims to develop an optimised detection system that pro-
vides better detection capability than systems currently available. This
will allow more effective identification of hot particles at radium legacy
sites, ultimately reducing the risk posed to the general public in both the
short and long terms.

1.2. Challenges of “hot” particle detection

The most effective method of detecting hot particles in real-time is
through a series of mobile measurements using either handheld or ve-
hicle mounted gamma-ray sensors (Tyler, 2008). At many sites where
vehicular access is limited handheld detectors can be the only option.
Handheld detectors produce gamma-ray spectra, the shape and magni-
tude of which will provide information of the localised radiation field
that the detector has passed through during acquisition. To ensure
that an area is adequately covered by a survey in a reasonable time
frame, typically a spectrum is acquired every second and a walking
speed of 0.5 m s−1 is maintained. This maximises the spatial density
of measurements and ultimately the probability of detecting any hot
particles. To initiate the immediate identification of a hot particle real-
time analysis of the spectral time series is critical (Kock et al., 2012).

The spectral response or signal quality of a detector will largely be
governed by the composition of the detector's active volume. Light-
weight scintillators tend to be used for handheld detectors, of these so-
dium iodide (NaI:Tl) is the standard as it is relatively cheap and robust
(Knoll, 2010). Nevertheless alternatives are available. One such detec-
tor, lanthanum bromide (LaBr:Ce), has recently received much atten-
tion (Guss et al., 2010). It has better energy resolution (~2.5% at
662 keV) than the NaI:Tl (~7% at 662 keV) (Fig. 1), greater photon effi-
ciencies and better temperature stability. However, a relatively large in-
trinsic background signal attributed to internal isotopes (138La and
227Ac) can be found distributed throughout the spectrum (Iltis et al.,
2006). Notice considerable contamination contributions at 1468 keV
(gamma and x-ray summation peak), 786–1100 keV (beta continuum)
and over 1700 keV (alpha) (Menge et al., 2007). This raises concerns
about its potential in low source signal situations as these are frequently
encountered in the environment.

The second element of a detection system is the algorithm used
to process the detector's signal in real-time to determine whether
there are signal contributions from a hot particle (Fig. 1). If the algo-
rithm is tripped, an alarm is sounded, allowing the operator to lo-
cate and retrieve any potential radioactive items (Jarman et al.,
2008). Yet processing environmental gamma-ray spectra is not
straightforward.

First of all the vast majority of spectral changes are benign and can
occur over the scale of a fewmetres (Fagan et al., 2012). This spatial var-
iation is brought about by changes in the natural radioelements (40 K,
and the 238U and 232Th series) contained within the local geology.
Changes can also occur temporally due to variations in the density and
chemical composition of the geological matrix and radon exhalation
(IAEA, 2003). Temporal fluctuations can be very challenging to account
for particularly as they can occur on varying time scales, for example de-
viations in density over a tidal cycle and radon exhalation caused by at-
mospheric pressure changes (Ball et al., 1991; De Groot et al., 2009).
Furthermore, weak source signals can appear very similar to back-
ground signals given that 226Ra forms part of the 238U series. Conse-
quently, in an attempt to isolate source signal from benign signal, it is
often appropriate to use themost recent observations in the time series
as estimates of background (Ely et al., 2004).

Fig. 1. Detector responses to a 226Ra hot particle: NaI:Tl (blue), LaBr:Ce background subtracted (red) and LaBr:Ce unprocessed (broken black).
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Another issue is that source signal will not remain constant. Firstly,
the signal will decrease significantly with increasing distance between
the detector and source. Secondly, non-linear changes will occur across
the spectrum as the amount of shielding (depth in soil) is increased and
often the majority of photons that reach the detector are scattered to
low energy (Wei et al., 2010). These occurrences can easily lead to
weak source signals, for instance a source at depth or a low activity sur-
face source, not being identified.

Finally, the short acquisition times (typically 1 s) demanded by the
high density of measurements during a survey, when combined with
the low energy efficiency of handheld detectors, results in spectra con-
taining a large stochastic noise element (Du et al., 2010). This renders
conventional spectral analysis methods founded on determination of
peak area unworkable (Alamaniotis et al., 2013).

These complications mean that source-background separation is
never going to be seamless and a trade-off between detection rate and
false alarm rate is encountered (Ely et al., 2006). To safeguard against
the operator losing confidence in the detection system, a typical false
alarm rate of 1 in 200 (α = 0.005) should be attained (Kock et al.,
2012). Subsequently to attain this false alarm rate, straightforward de-
terministic algorithms such as the Gross Counting algorithm are still
heavily relied upon and can produce poor detection rates (Runkle, 2006).

1.3. Machine learning

Here we hypothesise whether it is more appropriate to track general
changes in spectral shape by dividing raw spectra into more appropriate
energy bins (Fagan et al., 2012). However, this procedure is complicated
by the fact source and background populations may overlap consider-
ably within the new high dimensional feature space (depending on
the number of energy bins used) and possibly exhibit non-linear class
boundaries. This scenario can be unfeasible to separate using conven-
tional Newtonianmathematics (Smola et al., 1998). Instead, supervised
Machine Leaning (ML) algorithms can be employed to map the under-
lying relationship between explanatory and response variables
(Galushkin, 2007). For this reason, ML has been employed previously
to develop alarm thresholds for gamma-ray data (Kangas et al., 2008;
Sharma et al., 2012; Varley et al., 2015; Wei et al., 2010).

CustomarilyML attempts to address a statistical problemby learning
the underlying structure of a sample of data provided to it during a
training phase. Once training is complete, the performance of the
model fit can be assessed using independent cross-validation dataset
(Dragović et al., 2006). There are a number of possible ML methods
available (Ao et al., 2010). However, preliminary investigations demon-
strated neural networks (NNs) and support vector machines (SVMs) to
be the most encouraging for this application.

1.4. Neural networks

The structure of a NN is analogous of the brain in that it ismade up of
processing units called neurons connected by synaptic weights (Olmos
et al., 1992). Neurons are separated into three individual layers: input,
hidden and output. Spectral data can be fed into the input layer,
where it is passed through weighted synapses to the hidden layer
where a non-linear function is used to map the problem to the output
layer. Global convergence of the problem is attempted by minimising
the error between training outputs and actual outputs through an iter-
ative procedure of updating the weights between neurons (Gurney,
2003). To avoid getting trapped in local minima during this process
training algorithms such as “resilient backpropogation” are used
(Riedmiller and Braun, 1993).

1.5. Support vector machines

SVMs approach the problem differently to NNs, instead making use
of kernel functions to enlarge the feature space ensuring dot products

of the support vectors can be easily computed (Smola et al., 1998).
This allows the introduction of maximal-separating hyperplanes pro-
viding a means of separating complex populations without using vast
quantities of computer memory (James et al., 2013). This technique is
referred to as the “kernel trick”. There are a number of commonly ap-
plied kernels to perform this task including: polynomial, sigmoid, radial
basis function and spline (Sangeetha and Kalpana, 2010).

The aim of this study was to assess the performance of a number of
different detector-algorithm combinations (henceforth referred to as
detector configurations) by spiking background spectra with represen-
tativeMonte Carlo source spectra providing a means of establishing de-
tection rate and false alarm rate.

2. Materials and methods

2.1. Field site

In the early 1990s 226Rawas discovered at Dalgety Bay, Fife, Scotland
(−3.3505 °E, 56.0349 °N) (Fig. 2) attributed to actions once carried out
at its historical airfield, notably during wartime periods (Patton et al.,
2013). A housing estate, sailing club and public footpath now exist in
close proximity to known contaminated areas and erosion events have
redistributed large quantities of contaminated material onto the public
beach. As a result of the dynamic nature of the beach, hot particles are
regularly brought to the surface or relocated laterally (Dale et al.,
2013). This has prompted initially intense and subsequently large-
scale routine monitoring efforts to reduce the risk to the public. The
beach however presents a challenging environment in which to moni-
tor, since there are considerable variations in background and density
gradients, alongside large sections that contain relatively benign homo-
geneously distributed contamination (Fig. 2). Tyler et al. (2013) present
an interesting study into the physical and chemical formation and the
resultant risks associatedwith a number of hot particles found atDalgety
Bay.

2.2. Background data acquisition

Background spectra can change considerably from one site to next
and over time. Therefore, background data was acquired from Dalgety
beach using a NaI:Tl and LaBr:Ce (both 71 × 71 mm) attached to a
wheeled mounted frame, one behind the other, to ensure the same
ground was being covered by each detector. The detectors were
mounted at a height of 0.1 m. 1024 channel spectra were acquired
every second using Ortec's Maestro software alongside GPS coordinates
and integrated for real time mapping and assessment using software
developed at Stirling University. A walking speed of 0.5m s−1 and tran-
sect spacing of 0.5mweremaintained during the survey. A 1 second lag
was introduced to ensure that comparable background spectra were
used to test algorithms. A total of 35,000 “background” spectra were re-
corded for each detector over the course of 3 days.

2.3. Simulating the radiation field of a “hot” particle

Monte Carlo calibration spectra were preferred over analytical-
derived calibration spectra given that laboratory calibration can intro-
duce large systematic uncertainties (Hendriks et al., 2002). The software
package Monte Carlo N-Particle 5 (MCNP5) was used to produce full-
spectral responses (Briesmeister, 1993). To validate the modelling
method, Monte Carlo spectral responses were compared to experimen-
tal spectra taken from concrete calibration pads (Minty et al., 1997).
Above 150 keV, good agreement was found between calibration pad
and Monte Carlo spectra, therefore only energies above 150 keV were
used. The background dataset was known to exhibit a large range of
shielding conditions brought about by changes in geological matrix
composition and density. Attempting to model and then correlate this
variation would have been unfeasible, therefore a standard geological
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matrix (wet sand; 17% water) and density (1.5 g cm−3) were used
(Table 1).

To recreate realistic monitoring conditions a transect spacing of
0.5 m and walking speed of 0.5 m s−1 were assumed. In MCNP5 geom-
etry, this involved integrating the detector's response 0.5m through the
radiation field of a point source. Table 1 describes the geometric range
for the integration. A random sample was taken from the four dimen-
sional array, possessing the dimensions x, y, depth and activity. To en-
sure an unbiased routine the random number seed in MCNP5 was
changed between individual runs (Moreira et al., 2010). To reproduce
the characteristic resolution of each detector statistical broadening
was introduced after individual runs. Secular equilibrium was assumed
and physical data was obtained from the National Nuclear Data Center
(2013). Source spectra were then injected into the different detector
“background” datasets at the same point to ensure consistency. A total
of 20,000 spikes (with varying depth, activity and offset) were intro-
duced and the spike rate was kept below 1% of the background dataset
to prevent substantial overlap. To accurately assess SEPA mandate de-
tection rate, a separate dataset generated spiked with 6000 20 kBq
sources at 0.1 m burial depth.

3. Pre-processing and algorithm execution

3.1. Gross Counting algorithm

Gross Counting (GC) algorithms are used extensively on handheld
detectors, as they are relatively easy to setup (Ely et al., 2004; Jarman
et al., 2008). GC is currently the only algorithm to be employed at
Dalgety Bay (Dale et al., 2013). The method treats the entire spectrum
as a single bin, using a rolling average filter of the previous few mea-
surements to estimate the background (N) (Eq. (1)).

T ¼ N þ K
ffiffiffiffi
N

p
ð1Þ

K (sigma multiplier) defines the number of standard deviations
(√N) above N the alarm threshold should be set (Fig. 3). If a substantial
increase in signal is received the alarm should sound as T is breached.
The parameters K and the number of lags used on the moving average
were optimised on part dataset.

3.2. Spectral comparison ratios

Dividing the raw spectrum into broad energy bins, instead of using
raw data, alleviates some counting noise and reduces input dimension-
ality, although some loss of energy distinction is inevitable (Pfund et al.,
2010) (Fig. 4). Selecting optimal energy bins is a contentious subject and
novel algorithms have been implemented to optimise their number,
placement and size (Wei et al., 2011). In this study though, two system-
atic binning systems were applied as input for ML. The first, Resolution
Bins (RB), focused on the deterioration of resolutionwith increasing en-
ergy (Runkle, 2006) (Fig. 4). This produced 30 energy bins for LaBr:Ce
and 18 for NaI:Tl. Whilst systematic, this approach cannot account for
the fact thatmany of the bins, particularly at higher energy,may contain
zero counts for a single measurement. A secondmethod, Regions Of In-
terest Bins (ROIB), focussed around full energy peaks and scattering re-
gions was implemented producing 13 energy bins for each detector.

Fig. 2. Location of Dalgety Bay and a heat map demonstrating the variation in total count rate (counts s−1) taken using a 71 × 71 mm NaI:Tl detector.

Table 1
MCNP5 model parameter inputs.

Parameter Inputs

Geological matrix Wet sand 17% water
Soil density 1.5 g cm−3

Detector height 0.1 m
ax offset (direction of travel) 0–0.25 m
ay offset (perpendicular to travel) 0–0.5 m
aDepth 0–0.9 m
bActivity 1–100,000 kBq
a 50 mm discrete increments were applied between geometric constraints.
b Systematic sampling used between activity constraints.
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Note, energy bins are narrower for LaBr:Ce given its superior energy res-
olution, although significantly more background counts were encoun-
tered in each bin caused by intrinsic contamination.

Spectral Comparison Ratios (SCR) outlined by Trost and Iwatschenko
(2002), were used to transform energy bins into the time series to
measure how closely the observed spectrummatched that of the previ-
ous background measurement (Eq. (2)).

SCRi ¼ NC
1−

NB
1

NB
i
NC

i ð2Þ

where Ni
c is bin i, and N1

c is the first bin, of the current measured spec-
trum. Ni

B and N1
B are a respective moving averages of bin i and the first

bin of the previous spectra. This produces a transformed spectrum
where the first channel is 0 and all channels contained within a back-
ground spectrum should be close to zero as small temporal variations
are expected to occur (Du et al., 2010). Source contributions are antici-
pated to introduce larger deviations in spectral comparison ratios,
though these are expected to occur across the spectral energy range,
be non-linear in nature and contain a large counting noise element.
Therefore, the effectiveness of conventional source-background separa-
tion approaches often relying on Gaussian distribution statistics tends
to be too simplistic (Runkle, 2006).

3.3. Machine learning implementation

To train and assess the performance of detector configurations two
datasets were formed: a training dataset and a cross-validation dataset.
Typically 3000–5000 sampleswere used to trainML. For NNs, 30% of the
training set was set aside as a test set to track the progress of training.
The remaining data (~30,000) was used as the cross-validation dataset.
Data was mean centred and scaled to the variance prior to training. Im-
portantly, to produce the desired False AlarmRate (FAR), approximately
5–7 times more background samples were included during training. It

was discovered that by adding two more inputs (alongside spectral
comparison ratios), one containing a moving average of gross counts
and the other the total counts, an overall improvement in detection
for both detectors could be realised. In our previous work this has also
been found to be a benefit (Varley et al., 2015). This is not surprising
given that areas of high background and homogeneous contamination
will exhibit larger systematic variation, which ML could take into ac-
count by considering the total count rate and its localised variation. An-
other study employed a similar approach only alongside a deterministic
gross alarm instead of providing it as an input for ML (Kangas et al.,
2008).

3.4. Neural Network optimisation

To optimise the number of hidden neurons for NNs an extensive grid
search was conducted (Medhat, 2012). As anticipated, NNs implement-
ed on RB needed more hidden neurons compared to ROIB due to the
greater number of inputs (Dragovic et al., 2005). That said 15–20hidden
neurons provided the lowest Relative Mean Squared Error (RMSE) for
all NNs. RMSE on training and test sets for all NNs tended to converge
after a few hundred learning epochs. The R package “RSNNS” was
used (Bergmeir and Benítez, 2012).

3.5. Support Vector Machine optimisation

A radial basis function was found to provide the best degree of sep-
aration for SVMs in this application. Each radial basis function had two
parameters that were optimised by an extensive grid search for each in-
dividual problem. The so-called cost parameter (C) providing the toler-
ance of the number of support vectors to include either side of the
hyperplane presented no clear pattern between detector systems
(600–2000) (Hornik et al., 2006). However, the gamma parameter
specifying the width of the radial basis function varied between the

Fig. 3.Gross Counting obstacles: a 40K dominated spectrum (42) triggers the alarm as the threshold is broken, but the 226Ra spike possessing characteristic 214Bi peaks (68) is missed as it
does not reach the threshold.
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binning systems, RB (b3) and ROIB (~300). The R package “e1071”was
used (Dimitriadou et al., 2008).

3.6. Quality assessment

Quality assessment of individual detector configurations was based
on the Overall Detection Rate (ODR) (Eq. (3)), SEPA's 20 kBq Mandate
Detection Rate (MDR) (Eq. (4)) and the False Alarm Rate (FAR)
(Eq. (5)) of an independent cross-validation dataset. Once ML architec-
tures were obtained, 10 resamples (Section 3.4) were taken to obtain a
mean and standard deviation to ensure that final values were not a
chance representation.

ODR ¼ Numberof sourcesdetected
Totalnumberof injectedsources

ð3Þ

MDR ¼ Numberof mandatesourcesdetected
Totalnumberof injectedmandatesources

ð4Þ

FAR ¼ Numberof backgroundalarms
Totalnumberof background

ð5Þ

ODR is a generalmeasure of detectability and does not provide infor-
mation into the minimum detectable activity (MDA) as a function of
depth. For example, certain detection systemsmight be better at identi-
fying sources at the surface but less effectively at depth or vice versa.
Subsequently, MDA (α=0.95)wasfitted throughmaximum likelihood
using a binary logistic regression (Crawley, 2012).

4. Results and discussion

4.1. Optimisation of Gross Count algorithm

Initially, K values and the number of lags used in themoving average
were optimised to generate a GC baseline to compare ML to. Exponen-
tial moving average formulations, 2/(n + 1) and (1/n) for LaBr:Ce and
NaI:Tl respectively, were found to yield the highest ODR and MDR for
the require FAR (α N 0.005). ODR and MDR behaved very similarly
with varying lag and K values for both detectors, subsequently only
MDR is discussed at this stage (Fig. 5). Final ODR for the optimised
alarms can be found in Table 2.

NaI:Tl produced the highestMDR (0.8112), at a lag of 3, either side of
this lag a decrease in detectability was witnessed. K values appeared to
mirrorMDR for both detectors suggestive that, asmore noisewas added
through a change in lag, K attempted to negate its influence. The best
detectability was witnessed with the smallest K values (NaI:Tl = 3.9
and LaBr:Ce = 6.3). The higher K value for LaBr:Ce and the greater lag
(5), infers that the algorithm struggled to cope with the additional
noise introduced by internal contamination (Fig. 1). This significantly
lowered its MDR (0.5352). Overall, the GC method could not reach the
MDR set by SEPA for either detector.

4.2. Performance of machine learning algorithms

The performance of all algorithms is summarised for different bin-
ning and detector configurations (Table 2). The combination of a
NaI:Tl, an NN and ROIB provided the best ODR of 0.6927 ± 0.008

Fig. 4. Binning systems for NaI:Tl and LaBr:Ce detectors. Note the magnitude of bins has been altered for visual clarity.
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(Table 2). What is more, it was the only detector configuration able to
confidently attain SEPA's contractual mandate (MDR = 0.9531 ±
0.0072). However, ML produced a varying degree of performance
depending on the detection configuration it was employed on. This
can only be explained through the influence of individual detector
constituents.

4.3. Detector influence

Between the two detectors, NaI:Tl consistently proved to be the
most reliable for all ML (Table 2). For instance, the range of MDR for
NaI:Tl (0.6092 ± 0.0224–0.9531 ± 0.0072) was consistently higher
than LaBr:Ce (0.2028 ± 0.0505–0.5352). Notice, ML did not show any
improvement over GC in MDR for LaBr:Ce (although some improve-
ment is demonstrated in ODR). This indicates that LaBr:Ce, although it
has higher energy resolution and efficiency, is not suitable for this appli-
cation. Poor results were almost certainly attributed to the noise intro-
duced, across the entire spectrum, by intrinsic counts over the short
acquisition time. This noisewould have disguisedweaker source signals
and made it more difficult for any algorithm to identify the occurrence
of source signal. Even after certain bins corresponding to the most con-
taminated regions were removed no improvement in detection was
found.

Conversely, NaI:Tl does not suffer from significant internal contami-
nation permitting algorithms to isolate source signal with more confi-
dence. From an economic perspective this finding is beneficial since

NaI:Tl is approximately a fifth of the price of LaBr:Ce. That said, LaBr:Ce's
superior energy resolution could play amore significant role in accurate
depth and activity estimates useful for mapping purposes. What is
more, post-processing noise reduction techniques could be applied
in this scenario (Aage et al., 1999; Green et al., 1988). However,
given the difference in performance between the detectors, further dis-
cussion will focus on NaI:Tl due to its superior hot particle detection
performance.

4.4. Binning system influence

ROIB provided a consistent increase in detectability (MDR and ODR)
over RB (Table 2). In fact RB provided no or little improvement over GC.
This implies that by operating fewer bins and tracking changes in sensi-
tive areas known to be associatedwith source contributions, rather than
employing more of a formulated approach, source identification can be
improved. The reason for this disparity could be down to the fact that
many of the relatively narrow bins generated by the RB, for a single
measurement, contained very few counts or even zeros: introducing ex-
cessive noise. To add to this complication, some spectral regions of im-
portance were divided between two bins for instance the bin break at
2220 keV for NaI:Tl (Fig. 4). Some regionsmay also have been unneces-
sarily separated into multiple bins (i.e. below 200 keV) exhibiting un-
necessary correlation. A combination of these elements resulted in the
ML over-fitting to both the noise structure and benign changes, making
it less sensitive tomore subtle source contribution. The reduction in bins

Fig. 5.Mandate detection rates (top plot) and K values (bottom plot) as a function lag for NaI:Tl (empty circles and broken line) and LaBr:Ce (full circles and unbroken line) detectors.
NaI:Tl is on the primary axis and LaBr:Ce on the secondary.

Table 2
Statistics for all detector configurations.

Algorithm NaI:Tl LaBr:Ce

ODR MDR FAR ODR MDR FAR

GC 0.6357 0.8112 0.004 0.5055 0.5352 0.0046
NN-RB 0.5982 ± 0.0069 0.7044 ± 0.0867 0.0024 ± 0.0008 0.5427 ± 0.0082 0.5277 ± 0.079 0.0034 ± 0.0017
NN-ROIB 0.6927 ± 0.0080 0.9531 ± 0.0072 0.00439 ± 0.001 0.5479 ± 0.0040 0.3642 ± 0.0504 0.0048 ± 0.0015
SVM-RB 0.5759 ± 0.015 0.6092 ± 0.0224 0.0049 ± 0.0020 0.4873 ± 0.0153 0.2028 ± 0.0505 0.0041 ± 0.0023
SVM-ROIB 0.6693 ± 0.0011 0.8855 ± 0.012 0.0039 ± 0.0017 0.5058 ± 0.0194 0.3858 ± 0.0653 0.0086 ± 0.0056

Bold values indicate SEPA's mandate detection rate attained (N 0.95).
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(through ROIB) has alleviated some counting noise and simplified the
fitting process. This allowed ML to be more robust to changes in overall
spectral shape andultimately leading to better source discrimination. As
highlighted earlier, optimisation algorithms could aid in the decision of
bins (Wei et al., 2011).

4.5. Machine learning algorithm comparison

In the majority of cases NNs provided better results than SVMs
(Table 2), implying that the NNs were more efficient at dividing
background-source populations. A possible reason for this difference
may be that NNs were slightly better at defining non-linear boundaries
within the feature space. However, finding support from the literature is
difficult since this is the only study (to the best of the authors' knowl-
edge) that compares the methods in a gamma spectroscopy setting.
Studies in other scientific areas have found their performance to be sim-
ilar (Byvatov et al., 2003; Zhang et al., 2008).

4.6. Advantages of machine learning

The advantage of using ML to interrogate spectral shape as opposed
to total signal (GC) can be better understood by reviewing the MDR
with total mean count rate (Fig. 6). At low total mean count rate, MDR
was relatively high for all algorithms (N0.85). However, as total mean
count rate increased, GC's MDR decreased to below 0.7 at the highest
total mean count rates. Concurrently, ML tended to be significantly
more stable across the totalmean count range. At the limits of each pop-
ulation a large amount of uncertainty is observed due to the low sam-
pling size.

One fundamental reason behind this is that GC attempts to separate
source and background by assuming them to be two independent uni-
variate Gaussian distributions where the standard deviation (α =
0.68) is the square root of the mean (Knoll, 2010). To explain this, con-
sider two background count rates of 100± 20 and 250± 32 and the in-
troduction of a fixed source contribution of 35± 12 (α=0.95). For the
first scenario, source and background distributionswill not significantly
overlap allowing the alarm to be triggered seeing as T is confidently

breached (Eq. (1)). Yet in the second case, populationswill significantly
overlap ending up in the source being missed. Subsequently by using
one bin, the signal to noise ratio is reduced relatively consistently with
increasing count rate.

By dividing the spectrum into ROIB,more subtle spectral changes oc-
curring across the entire spectrumare capturedwithin spectral compar-
ison ratios. Although the amount of counts has not increased an overall
increase in signal to noise ratio is witnessed (Ely et al., 2006). This leads
to source information being preserved more efficiently with increasing
background count rate.

Another factor is that larger benign systematic fluctuations tend to
occur with higher total count rate as some areas will be cluttered with
discrete background sources (i.e. masonry or rocks). GC tends to false
alarm more regularly in such areas (Fig. 3). To circumvent this occur-
rence a larger value of K has to be set, thus lowering the MDR in higher
count rate areas (Eq. (1)). A dynamic function fitted to K allowing it to
take into account general systematic changes with varying mean
count rate could arguably be employed. This could decrease FAR
slightly. ML methods (NN and SVM), because they take into account
changes in shape as well as overall magnitude, are better able to cope
with benign fluctuations and ultimately be more sensitive to source
contributions.

The improvementML offers in comparison to GC is demonstrated by
observing the MDA with depth (Fig. 7). The NN permitted the NaI:Tl to
detect all activities on average 0.1 m deeper into the soil column com-
pared to GC, for example 1 MBq could be detected down to a depth of
0.46 m using GC whilst the NN could distinguish down to a depth of
0.55 m. The SVM demonstrated less of an improvement over GC al-
though still noticeable. The SVM could detect on average 60mm further
into the soil column.

The influence of detector is apparent. The optimised LaBr:Ce, operat-
ing anNN, could only just detect SEPA'smandate at the surface, whereas
the optimised NaI:Tl could detect it down to a depth of 0.16 m. Notice
that at greater depths this disparity diverges slightly, for instance
LaBr:Ce could identify a 20MBq hot particle to a depth of 0.7m, however
NaI:Tl (0.9 m) could detect the same activity 0.2 m deeper. This may
have been caused by the majority of source photon being scattered to

Fig. 6.General trends inmandate detection rate as a function of totalmean count rate for optimisedneural network, support vectormachine and gross count algorithms forNaI:Tl.Machine
learning algorithms used the region of interest bins. Sample density and confidence intervals (α = 0.95) are included.
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low energy into a region of substantial contamination for LaBr:Ce
(b400 keV) (Fig. 1).

4.7. Future prospects for machine learning in routine monitoring

It has been shown that through the use of ML a marked improve-
ment in detection rate could be obtained by a simple change in software
as opposed to expensive hardware changes. However, there are consid-
erations that must be taken into account before employing the
technique.

NNs, and to some extent SVMs, are powerful when making predic-
tions within the confines of the training dataset as demonstrated
through this work. Yet when presentedwith data outside of this convex
hull they are very poor extrapolators (Dragović et al., 2006; Haley and
Soloway, 1992). One of themain concerns in this application is the abil-
ity of NN to manage changes in background populations brought about
by variations on spatial and temporal scales. The spectral comparison
ratios transformation to some extent negates this influence (2).

However, it was found that by using two subsets of our data from
different parts of the time series and geographical positions, one to
train and test and one to cross validate, the detection system perfor-
mancewas significantly reduced. This infers that background variations
at Dalgety Bay are complex and cannot be taken fully into account by
using spectral comparison ratios. Hence for optimum performance, the
background population must be well characterised for all individual
areas. This eventually is very much attainable in routine monitoring
given that large amounts of data, typically hundreds of thousands of
spectra, can be generated over a relatively short period of time. This
should allow ML to work within the limits of the known population
and ultimately be more sensitive to radiation fields from hot particles.
Nonetheless, the inter-site capability of the approach may be limited
for real-time detection.

Another important issue to be addressed is the representativeness of
source calibration data. This study adopted a simplified model on the
grounds that correlating materials between the Monte Carlo model
and background data is unfeasible. However, acquiring data from

routinemonitoringmay provide ameans of supplying additional source
data to update the model.

5. Conclusions

The identification of 226Ra hot particles through real-time analysis of
gamma spectroscopy data can be problematic particularly in the case of
a weak source signal and variable background. It has been demonstrat-
ed thatML can significantly improve detection limits in this situation by
focussing on changes in spectral shape compared to conventional total
count rate algorithms. In this context, the intrinsic contamination of
LaBr:Ce resulted in poor detection rates compared to NaI:Tl for the de-
tection of 226Ra hot particles. These findings represent a relatively inex-
pensive development in routine monitoring. The approach outlined in
this study could arguably be applied to other sites and other radioiso-
topes; notably 137Cs.
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